
BRIEF COMMUNICATION OPEN

The therapeutic response of ER+/HER2− breast cancers
differs according to the molecular Basal or Luminal subtype
François Bertucci 1,2✉, Pascal Finetti 1, Anthony Goncalves1,2 and Daniel Birnbaum 1

The genomics-based molecular classifications aim at identifying more homogeneous classes than immunohistochemistry,
associated with a more uniform clinical outcome. We conducted an in silico analysis on a meta-dataset including gene expression
data from 5342 clinically defined ER+/HER2− breast cancers (BC) and DNA copy number/mutational and proteomic data. We show
that the Basal (16%) versus Luminal (74%) subtypes as defined using the 80-gene signature differ in terms of response/vulnerability
to systemic therapies of BC. The Basal subtype is associated with better chemosensitivity, lesser benefit from adjuvant hormone
therapy, and likely better sensitivity to PARP inhibitors, platinum salts and immune therapy, and other targeted therapies under
development such as FGFR inhibitors. The Luminal subtype displays potential better sensitivity to CDK4/6 inhibitors and
vulnerability to targeted therapies such as PIK3CA, AR and Bcl-2 inhibitors. Expression profiles are very different, showing an
intermediate position of the ER+/HER2− Basal subtype between the ER+/HER2− Luminal and ER− Basal subtypes, and let suggest
a different cell-of-origin. Our data suggest that the ER+/HER2− Basal and Luminal subtypes should not be assimilated and treated
as a homogeneous group.
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INTRODUCTION
Breast cancer (BC) is heterogeneous. The treatment and the
patients’ inclusion in the clinical trials remain based upon
clinicopathological features including immunohistochemistry
(IHC), insufficient to capture the disease heterogeneity. The
genomics-based classifications aim at identifying more homo-
geneous classes based on the functionality of molecular
pathways and associated with a more uniform therapeutic
response and outcome. Accumulating evidence suggests
that these molecular subtypes provide clinically relevant
information beyond clinicopathological classes1–3. In a recent
study4, 13.1% of IHC estrogen receptor-positive HER2-negative
(ER+/HER2−) BCs were reclassified as molecular Basal subtype
by the 80-gene signature (80-GS)5. When compared to the ER+/
HER2− cases reclassified as Luminal subtype (74.1%), the Basal
samples displayed lower ESR1 mRNA expression and increased
relative ERΔ7 dominant-negative variant expression, shorter 3-year
distant relapse-free interval (DRFI), and higher pathological
complete response rate (pCR) to chemotherapy (CT). But the
authors pointed to a few limitations: the limited number of ER+
Basal patients (54 for DRFI, 70 for pCR), the short median
34-months follow-up, and absence of information regarding the
sensitivity to hormone therapy (HT). To reinforce these results and
extend them to the response and/or potential vulnerability to HT
and other systemic therapies of BC, and to assess the degree
of difference between these subtypes, we analyzed in silico a
meta-dataset including gene expression data from 8982 non-
redundant BCs6, and DNA copy number/mutational and proteomic
data from TCGA. Our aim was to compare the Basal versus Luminal
samples.

RESULTS
Prognostic analysis according to the molecular subtype
A total of 5836 samples were clinically defined as ER+/HER2−: 4341
(74%) were reclassified as Luminal by the 80-GS, 931 (16%) as Basal,
and 564 (10%) as HER2-enriched. Because our aim was to compare
the Luminal and Basal samples, the HER2-enriched samples were
excluded, leaving 5272 samples for analysis. Regarding the
prognostic features, the Basal samples comprised more grade 3
than the Luminal (p= 7.91E−22), more pT3 tumors (p= 3.25E−03),
more TP53-mutated tumors (p= 2.77E−12), and more “high-risk”
tumors according to prognostic gene expression signatures (GES):
Mammaprint (p= 3.94E−56), Recurrence Score (p= 2.43E−121),
and EndoPredict (p= 3.15E−73; Table 1). ER expression level was
lower in the Basal samples than in the Luminal samples, in terms of
both mRNA expression (p= 6.14E−193) and percentage of positive
tumor cells by IHC (p= 4.33E−02; p= 2.33E−19; Fig. S1).
Regarding DRFI, 2008 patients operated for ER+/HER2− early

BC were informative, including 1664 Luminal and 344 Basal. None
of them had received any neoadjuvant systemic treatment,
whereas 524 (35%) had received adjuvant HT and 342 (21%)
adjuvant CT. With a median follow-up of 65 months (range,
1–299), the 5-year DRFI was not different between the two
subtypes: 81% (95%CI 77–86) in Basal versus 79% (95%CI 77–82) in
Luminal (p= 0.240; Fig. 1a). However, the temporal pattern of
events differed with 65% of events (41/63) in the Basal within
the first 3 years, versus only 44% (159/362) in the Luminal (p=
2.46E−03). In univariate analysis, the pathological grade and
tumor size, and the use of adjuvant HT were associated with
DRFI, whereas grade, axillary lymph node status and use of
adjuvant HT were significant in multivariate analysis (Table S1).
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Therapeutic response/vulnerability according to the molecular
subtype
Eighty-five Basal BCs and 452 Luminal BCs had received
anthracycline-based neoadjuvant CT followed by surgery. We
confirmed the higher chemosensitivity of Basal subtype with 32%
(27/85) pCR rate versus 9% (42/452) in the Luminal subtype (q=
1.63E−06, Fig. 1c). Such difference was also predicted by the
predictive DLDA30 GES7, which identified 30% (276/931) of Basal

samples as “pCR-predicted” versus <1% (19/4341) of Luminal (q=
1.63E−78). Among the 1509 Luminal or Basal ER+/HER2− patients
informative for DRFI and adjuvant HT, 524 and 985 had and had
not received adjuvant HT, respectively. The Luminal subtype
benefited from adjuvant HT with 90% (95%CI 87–94) 5-year DRFI
with HT versus 82% (95%CI 79–85) without (p= 1.10E−02),
whereas the Basal subtype did not (82% [95%CI 73–92] 5-year
DRFI with versus 79% [95%CI 72–86] without; p= 0.422; Fig. 1b).

Table 1. Clinicopathological characteristics of patients and samples according to the molecular subtype.

Characteristics N ER+ Luminal ER+ Basal p valuea N ER− Basal p valueb

Patients’ age 0.296 7.89E−26

≤50 years 1335 1115 (33%) 220 (31%) 632 632 (49%)

>50 years 2795 2296 (67%) 499 (69%) 666 666 (51%)

Pathological type 0.561 3.48E−16

Ductal 2241 1825 (74%) 416 (76%) 710 710 (85%)

Lobular 394 324 (13%) 70 (13%) 21 21 (3%)

Other 380 318 (13%) 62 (11%) 103 103 (12%)

Pathological grade 7.91E−22 1.86E−251

1 637 562 (18%) 75 (11%) 15 15 (1%)

2 1941 1660 (54%) 281 (42%) 160 160 (14%)

3 1137 829 (27%) 308 (46%) 997 997 (85%)

Pathological tumor size (pT) 3.25E−03 3.38E−10

pT1 1431 1207 (42%) 224 (38%) 288 288 (31%)

pT2 1681 1398 (49%) 283 (49%) 542 542 (57%)

pT3 324 248 (9%) 76 (13%) 114 114 (12%)

Pathological axillary lymph node status (pN) 0.275 0.38

Negative 2168 1791 (58%) 377 (55%) 596 596 (59%)

Positive 1626 1320 (42%) 306 (45%) 422 422 (41%)

TP53 mutation status 2.77E−12 6.02E−42

Wild-type 1559 1323 (95%) 236 (84%) 255 255 (71%)

Mutated 108 63 (5%) 45 (16%) 103 103 (29%)

Mammaprint relapse risk 3.94E−56 1.99E−231

Low 1879 1757 (40%) 122 (13%) 13 13 (1%)

High 3393 2584 (60%) 809 (87%) 1647 1647 (99%)

Recurrent score relapse risk 2.43E−121 <2.00E−255

Low 2110 1968 (45%) 142 (15%) 19 19 (1%)

Intermediate 1575 1357 (31%) 218 (23%) 1555 86 (5%)

High 1587 1016 (23%) 571 (61%) 86 1555 (94%)

EndoPredict relapse risk 3.15E−73 <2.00E−255

Low 2729 2498 (58%) 231 (25%) 19 19 (1%)

High 2543 1843 (42%) 700 (75%) 1641 1641 (99%)

Pathological complete response (pCR) 3.72E−08 1.08E−15

No 468 410 (91%) 58 (68%) 271 271 (69%)

Yes 69 42 (9%) 27 (32%) 123 123 (31%)

Adjuvant HT 0.369 3.25E−83

No 1375 1134 (47%) 241 (49%) 655 655 (87%)

Yes 1542 1292 (53%) 250 (51%) 101 101 (13%)

Adjuvant CT 0.129 1.96E−45

No 3097 2598 (87%) 499 (84%) 756 756 (67%)

Yes 496 402 (13%) 94 (16%) 367 367 (33%)

5-year DRFI, % (95% CI) 2008 79% (77−82) 81% (77−86) 0.24 630 62% (58−67) 1.11E−15

DRFI event, yes 2008 362 (22%) 63 (18%) 0.168 630 201 (32%) 1.60E−07

HT hormone therapy, CT chemotherapy.
ap value for the comparison ER+ Basal versus ER+ Luminal.
bp value for the comparison between ER+ Basal, ER+ Luminal, and ER− Basal.
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This was confirmed in multivariate analyses (Table S2). In the
Luminal subtype, the use of adjuvant HT was an independent
favorable prognostic variable (p= 3.13E−02), whereas positive pN
and higher grade were unfavorable variables. By contrast, in the
Basal subtype, the use of adjuvant HT was not associated with
DRFI (p= 0.952). Such lesser hormone sensitivity of the Basal
subtype was also suggested (Fig. 1c) by the higher percentage of
“high-risk” cases according to the E2F4-activation signature
associated with resistance to HT8 (47% of Basal versus 34% of
Luminal; q= 8.93E−11).
We then compared the potential vulnerabilities of ER+/HER2−

Basal versus Luminal tumors to targeted therapies. We found
higher RBsig score9 and E2F regulon score10 in the Basal subtype
(q= 2.44E−31 and q= 1.02E−08 respectively), evocative of RB1-
pathway disruption and associated with resistance to CDK4/6
inhibitors, suggesting a likely lower sensitivity to these drugs. By
contrast, the percentage of patients with signature evocative of
homologous recombination deficiency11 was higher in the Basal
(21%: 25/109) versus Luminal samples (6%: 29/520; q= 5.18E−06),
suggesting potential higher sensitivity to PARP inhibitors. The
percentage of patients with PIK3CA hotspot mutation was higher

in Luminal (37%: 571/1528) versus Basal (30%: 88/290), but the
difference lost significance after correction for multiple testing
(q= 0.100). Regarding the other actionable genetic alterations
(AGAs) of BC with clinical evidence level equal to 1−212,13, FGFR2
and KRAS amplifications tended to more frequent and PIK3CA
amplification more frequent in the Basal subtype (Table S3).
Finally, the immune expression profiles were also very different.
The Basal subtype displayed enrichment for the Bindea’s
expression modules14 representing cell populations associated
with adaptive and innate immunity (q < 1.00E−50), higher PDL1
mRNA expression (q= 4.19E−23), and more frequent ICR4 class
(24% versus 7%; q= 5.75E−39)6, suggesting potential for better
response to immune checkpoint inhibitors.

Molecular profiles of the ER+/HER2− Basal versus Luminal
subtypes
We then compared the whole-exome mutational, whole-genome
transcriptional, and proteomic (RPPA) profiles of the two subtypes
in the TCGA set. Only one gene, TP53, was differentially mutated,
in 39% of Basal versus 12% of Luminal samples (q= 2.17E−05:

ba

c

0 >1<-1
Odds Ratio

(centered)

q-value (-log10)

pCR

ER pathway activation
PR pathway activation

E2F4 activation sign.

PIK3CA mutation
HRD score

T-cells
Th1 cells
Tγδ cells

Cytotoxic cells

NK CD56dim
DC

aDC
Macrophages

Neutrophils
PDL1 mRNA

ICR class
CD44+CD24- sign.

Mammary stem cells
Progenitor luminal

Mature luminal

Chemotherapy

Hormone therapy

CDK4/6 inhib.

PARP inhib.
PIK3CA inhib.

Immune
checkpoint inhib.

Mammary stem cells

DLDA30

B cells

RBsig sign.
E2Fregulon sign.

0 50 100 150

5-year

N 5-y DRFI N
ER+/HER2- Luminal 813 442 90% 1.10E-02

ER+/HER2- Basal 82 79% 172 82% 0.422

p-value
HT-

82%
5-y DRFI
HT+

0 20 40 60 80

0.0

0.2

0.4

0.6

0.8

1.0

N=1,509

Months after diagnosis

D
is

ta
nt

 R
el

ap
se

-F
re

e 
In

te
rv

al

Log-rank, p=4.50E-02

ER+/HER2- Basal
ER+/HER2- Luminal

p=0.240

ER- Basal

ER+/HER2- Basal

ER+/HER2- Luminal

62%

81%

79%

5-year
0 20 40 60 80

0.0

0.2

0.4

0.6

0.8

1.0

N=2,638

Months after diagnosis

D
is

ta
nt

 R
el

ap
se

-F
re

e 
In

te
rv

al

Log-rank, p=1.11E-15

ER+/HER2- Basal vs. ER+/HER2- Luminal
ER+/HER2- Basal vs. ER- Basal

ER+/HER2-
Luminal

ER+/HER2-
Basal

ER-
Basal

>300
>300

>300
>300
295
>300

Fig. 1 Comparison of the ER+/HER2− Basal subtype, ER+/HER2− Luminal subtype, and ER− Basal subtype breast cancers. a Kaplan
−Meier postoperative DRFI curves in early BCs according to the ER IHC status and the 80-GS molecular type. b Similar to (a), but in ER+/HER2
− early BCs patients only, untreated (dashed curves) and treated (solid curves) with adjuvant HT. c Heatmap of the odds ratios (ORs) of
regression analysis between the three tumor subtypes (ER+/HER2− Luminal subtype, ER+/HER2− Basal subtype, and ER− Basal subtype used
as reference for comparison) for different variables related to the percent of pCR after CT or the probability of therapeutic response of BC to
CT, HT, CDK4/6 inhibitors, PIK3CA inhibitor, PARP inhibitors, and immune checkpoint inhibitors. Variables associated to mammary stem cells
are also shown. For each variable, the ORs are mean-centered and color-coded according to the color scale shown below. On the right, the bar
plots represent the log10-transformed q values of regression analysis for the comparison of each variable between ER+/HER2− Basal subtype
versus ER+/HER2− Luminal subtype (blue bar), and between ER+/HER2− Basal subtype versus ER− Basal subtype (orange bar). The longer is
the bar, the lower is the q value.
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Table S4). We identified 906 genes as differentially expressed
between the two ER+/HER2− subtypes (Table S5). The robustness
of this gene list was confirmed by its capacity to differentiate the
two subtypes in the independent validation set (Fig. S2). Ontology
analysis (Table S6) showed that the genes upregulated in Basal
samples were mainly involved in immune response. Comparison
of RPPA profiles identified 89 proteins/phosphoproteins as
differentially expressed between the two ER+/HER2− subtypes
(Table S7). ER-alpha, PR and GATA3 were as expected among the
top proteins overexpressed in the Luminal subtype, as well as
androgen receptor (AR)15 and Bcl-216, two therapeutic targets
under development in ER+/HER2 BC, whereas PARP1 was among
the top proteins overexpressed in the Basal samples.
To further compare the extent of differences between the

ER+/HER2− Basal versus Luminal samples, we included the ER−
Basal subtype. There was a gradient between the three molecular
subtypes for nearly all comparisons (Table 1, Fig. 1c), the
ER+/HER2− Basal subtype being intermediate between the two
other ones, but much more different (as indicated by the q values
in Fig. 1c) in terms of response or vulnerability to systemic
therapies from the ER+HER2− Luminal subtype than from the
ER− Basal subtype. Principal component analysis (PCA) of whole-
genome transcriptional profiles (Fig. S3), and the classification of
samples based on the 906 gene list (Fig. S2) confirmed that the
ER+/HER2− Basal subtype was intermediate between the two
other subtypes. Differences were also present with respect to the
mammary stem cells signatures17,18, the ER+/HER2− Basal
subtype being more related to the mammary stem cells, the
ER+/HER2− Luminal to the mature luminal cells, and the ER−
Basal to the progenitor luminal cells.

DISCUSSION
Our in silico analysis shows that the ER+/HER2− Basal subtype is
very different from the ER+/HER2− Luminal subtype—and
sometimes closer to the ER− Basal subtype—in terms of response
and/or potential vulnerability to systemic therapies of BC. These
results obtained on a large series reinforce the potential clinical
value of the molecular subtypes within ER+/HER2− BCs, already
suggested in smaller series4,19 regarding the prognosis after HT
and the sensitivity to chemotherapy and CDK4/6 inhibitors. They
also suggest differential therapeutic vulnerability regarding PARP
inhibitors and platinum salts, PIK3CA inhibitor, immune therapy
and other targeted therapies under development.
The Basal samples were more frequently associated with poor-

prognosis features than the Luminal samples. However, the 5-year
DRFI was not different, in agreement with the MINDACT trial20, but
in contrast with the Groenendijk’s study likely because of a longer
follow-up. Other studies have reported decreased survival out-
comes in the Basal subtype when compared with the Luminal one
in early BC treated with adjuvant tamoxifen21 and in advanced BC
treated with letrozole22. In our study, the high percentage of
ER+/HER2− patients untreated with adjuvant HT (65%) allowed to
compare the benefit of adjuvant HT in the two subtypes, showing
higher benefit in the Luminal subtype, even if the number of Basal
patients was relatively small (N= 254) and precluded any definite
conclusion. This high percentage, notably in the Luminal subtype
(65% versus 32% in the Basal subtype), and this observation likely
explain the absence of difference observed for DRFI between the
two subtypes. Higher sensitivity to HT of the Luminal subtype
might be at least in part related to higher ER expression level
(mRNA and protein) and a more functional ER pathway (Gatza’s
activation signatures). The Basal-type was more sensitive to
neoadjuvant CT as previously reported in smaller series of
ER+/HER2− patients23,24, likely in part because of higher
pathological grade and cell proliferation rate (prognostic GES).
Signatures predictive of response to CDK4/6 inhibitors, recently
approved in BC25, suggested higher sensitivity of the Luminal

subtype. In the PALOMA-2 study, the non-Luminal subtypes (20%
of the entire population) had very small absolute benefits, if any,
from palbociclib, whereas the Luminal subtype benefited sub-
stantially from palbociclib plus letrozole versus letrozole26. Our
data provide new insights regarding the potential vulnerability to
other drugs recently approved or in development in BC. For
example, no data are available in the literature regarding the
sensitivity to PARP inhibitors of the Luminal versus Basal subtypes
within ER+/HER2− cases. Our results (HRD score) suggest that the
drugs being evaluated in Basal/TN breast cancers (PARP inhibitors
and platinum salts) deserve to be tested in the Basal subtype. No
signature predictive for sensitivity exists for the alpelisib
inhibitor27, but we found more frequent PIK3CA mutations, a
clinically validated selection criterion for alpelisib, in the Luminal
subtype, even if the difference was not significant after correction
for multiple testing. A few level 2 AGAs, FGFR2 and KRAS
amplifications and PIK3CA amplification were more frequent in
Basal samples. Finally, the Basal subtype displayed immune profile
of “hotter” tumors than the Luminal subtype, suggesting
potentially higher sensitivity to immune checkpoint inhibitors.
Importantly, all these differences were not dependent on the
molecular classification used because we observed similar results
when using the PAM50 signature (Table S2, Fig. S4).
To our knowledge, we also report the first comparative analysis

of large-scale molecular profiles of ER+/HER2− Basal versus
Luminal subtypes. Only one gene (TP53) was differentially
mutated, whereas important differences existed at the mRNA
and protein levels. Five percent of genes tested were differentially
expressed, including many immune genes upregulated in Basal
samples. Thirty-nine percent of 226 proteins/phosphoproteins
tested were differentially expressed, including therapeutic targets
of drugs under development in ER+/HER2− BC such as PARP1, AR
and Bcl-2. Inclusion of the ER− Basal subtype showed a gradient
between the three subtypes from the ER+/HER2− Luminal
subtype to the ER− Basal subtype in terms of clinicopathological
correlations and transcriptional profiles. However, the ER+/HER2−
Basal subtype was closer to the ER− Basal subtype than to the ER
+/HER2− Luminal subtype in terms of response/probability of
response to systemic therapies. The extent of differences between
subtypes was also suggested by the mammary stem cell
signatures, which could suggest a different cell-of-origin. Strik-
ingly, the ER+/HER2− Basal samples were closer to the mammary
stem cells than were the ER− Basal samples, warranting further
investigations.
In conclusion, our results reinforce the potential clinical value of

the different molecular classifications in ER+/HER2− BCs: the Basal
and Luminal subtypes are so different with respect to therapeutic
response/vulnerability, metastatic risk and cell-of-origin that they
cannot continue to be assimilated and treated as a unique
homogeneous ER+/HER2− group. Validation in prospective
clinical trials is warranted, and caution is required in the
interpretation of ongoing trials and the design of future trials.

METHODS
Breast cancer samples, gene profiling and data analysis
We analyzed our BC gene expression database6 pooled from 36 public
datasets (Table S8), comprising 8982 invasive primary BCs. The details of
Institutional Review Board and Ethical Committee approval and patients’
consent for all 36 studies are present in their corresponding publications
listed in Table S8. The preanalytic data processing was done as described6.
We also collected DNA and proteomic data from TCGA (WES data, array-
CGH, HRD score, RPPA)11 and the PIK3CA and TP53 mutational statutes of
TCGA and Metabric28.
ER and HER2 statutes were preferentially determined by study

annotation when in agreement with the recent ASCO guidelines29,30.
Where unavailable, the normalized gene expression data were used to
infer the receptor status. Indeed, several points made impossible to
apply the same definition of IHC positivity to all samples: the definition of
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ER-positivity by IHC was not available across all studies, and when
available, the positivity cut-off was not similar between all studies (1% or
10%); the percentage of tumor cells stained was not available across most
of studies; and the ER status was missing for a few samples. The cut-off
value for ER status in the most recent ASCO guidelines is 1%30. Thus, we
have kept the IHC status annotated in the original study when it was based
upon a cut-off value of 1%. When it was annotated positive with a 10% cut-
off, the sample remained of course positive with the 1% cut-off. When we
could not redefine the ER status according to the ASCO guidelines (e.g. in
case of a negative status when a 10% cut-off on IHC was used in the
original study, or in case of unavailability), we inferred the ER status from
transcriptional data of ESR1, by using a two-component Gaussian finite
Mixture Model using maximum likelihood estimation on a per-study basis
as previously described31. This was made possible thanks to the bimodal
distribution of mRNA expression level. The mRNA threshold was verified on
the 5548 samples of our database ER-annotated according to the 1% ASCO
guideline IHC cut-off: the concordance rate was 93%, suggesting good
performance. Out of the 8982 samples of our database, 6563 were defined
as ER+ (5342 according to IHC and 1221 according to inferred stratus).
The same process was applied for defining the HER2 status, the cut-off

of which was based on the recent ASCO guidelines29. In accordance with
this guideline, the samples were considered HER2+ when they reached an
IHC score of 3+ or 2+ with FISH amplification. A HER2 IHC score of +1 or 0
was considered negative. When the information was not available, and
thanks to the bimodal distribution of mRNA expression level, the
HER2 status was inferred from the mRNA expression level as described
for ER31. The mRNA threshold was verified within the 6563 ER+ samples on
the 3050 HER2-annotated according to the ASCO guidelines: the
concordance rate was 91%, suggesting good performance. Out of the
6563 ER+ samples of our database, 727 were defined as HER2+ (421
according to IHC and 306 according to inferred stratus), leaving 5836 ER
+/HER2− samples.
We applied to each dataset separately several GES: 80-GS5 and PAM5032,

and the surrogate signatures of three commercial prognostic signatures
(Recurrence Score33, Mammaprint34, EndoPredict35), Gatza’s ER and PR
pathways activation signatures36, E2F4-activation signature associated with
resistance to HT8, two scores associated with resistance to CDK4/6
inhibitors on preclinical models for RBsig9 and on clinical samples of
PALOMA-3 trial for E2F regulon10, several Bindea’s expression modules14

representing different immune cell populations, the immunologic constant
of rejection (ICR) signature6, and two signatures related to mammary
epithelial cell hierarchy and stem cells17,18. For all above-quoted GES, all
5272 samples (931 Basal and 4341 Luminal) were informative. The PDL1/
CD274 mRNA expression level was assessed as previously described17,18.
The present in silico study was approved by our Institutional Review Board
(No. 19-006; March 15, 2019).
Supervised analyses compared the profiles of ER+/HER2− Basal versus

Luminal TCGA samples at several levels: WES mutational and RPPA
proteomic using logistic regression with significance thresholds of p ≤ 0.05
and q ≤ 0.10, and transcriptional using moderated t test with significance
thresholds of fold-change and |FC | > 2, p ≤ 0.05 and q ≤ 0.10.

Statistical analysis
The data generated and analyzed during this study are described in37 and
correspond to 36 publicly available datasets that are listed in Supplemen-
tary Table 8 (all datasets) and in data refs 7,11,28,34,38–105. The prognostic
clinicopathological variables tested included the patients’ age (≤50 years
versus >50), and pathological type (ductal versus lobular versus other),
grade (1 versus 2 versus 3), tumor size (pT1 versus pT2 versus pT3), and
axillary lymph node status (negative versus positive), and use of adjuvant
HT and CT (yes versus no). Distant relapse-free interval was calculated from
the date of diagnosis until the date of distant relapse or death from breast
cancer. Event-free patients lost to follow-up or dead from unspecified
cause or from cause unrelated to breast cancer were censored at time of
last contact. The follow-up was calculated from the date of diagnosis until
the date of last news for event-free patients using the reverse Kaplan
−Meier method. Survivals were calculated using the Kaplan−Meier
method and compared with the log-rank test. Uni- and multivariate
analyses for DRFI were done using Cox regression analysis (Wald test). The
pCR after neoadjuvant chemotherapy was defined as absence of invasive
cancer in both breast and axillary lymph nodes (ypT0/Tis-ypN0).
Correlations between molecular subtypes and other variables were
analyzed using Fisher’s exact test and t test (Table 1) and regression
analysis with binomial or Gaussian family (Figs. 1 and S4) for discrete or

continuous variables respectively. All statistical tests were two-sided at the
5% level of significance. In the case of multiple testing, the p values were
replaced by the corrected q values. Analyses were done in the R software
(version 3.5.2) using glm function and the survival package (version 2.44).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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